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Abstract

General formulas for computing the radiation force exerted on arbitrarily oriented and

arbitrarily shaped nonspherical particles due to scattering, absorption, and emission of

electromagnetic radiation are derived. For randomly oriented particles with a plane of symmetry,

the formula for the average radiation force caused by the particle response to external illumination

reduces to the standard Debye formula derived from the Lorenz-Mie theory, whereas the average

radiation force caused by emission vanishes.
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It is well known that a particle illuminated by a beam of light experiences a force called

radiation pressure. This phenomenon is used in laboratories to levitate and size small particles

[1,2] and affects the spatial distribution of interstellar and circumstellar dust grains [3-5]. In a

renowned paper published in 1909 [6], Debye showed that the radiation force exerted on a

spherical particle is directed along the propagation direction of the incident beam and derived a

simple formula expressing the magnitude of the force in terms of the particle extinction and

scattering cross sections and the asymmetry parameter. This Note extends Debye's analysis to

arbitrarily oriented and arbitrarily shaped nonspherical particles. In addition, it considers the

radiation force caused by emission of electromagnetic radiation by a nonspherical particle having

a finite absolute temperature.

Let an arbitrary particle be illuminated by a time-harmonic parallel electromagnetic wave. If

the amplitudes of the incident and scattered fields do not change in time, the force due to radiation

pressure exerted on the particle averaged over the period 2n/co of the incident wave is

S

(Section 6.7 of [7]), where r is the position vector, TM is the Maxwell stress tensor, the

integration is performed over a closed surface S surrounding the scattering object, and fi is the

unit vector in the direction of the local outward normal to S. Assume for simplicity that the

scattering object is imbedded in a vacuum. Then the instantaneous value of the Maxwell stress

tensor is [7]

_,l(r,t) = e.o[E(r,t) ® E(r,t) + c2B(r,t)® B(r,t) -l [E(r,t) "E(r,t) + c2B(r,t) "B(r,t)] "[]

= e0E(r,t) ® E(r,t) + g0H(r,t) ® H(r,t) - l[e0E(r,t). E(r,t) + goH(r,t) •H(r,t)] 7,

(2)

where E is the electric and H the magnetic field, B is the magnetic induction, e0 is the electric

permittivity and go the magnetic permeability of free space, c = 1/e_og % is the speed of light in
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a vacuum, i is the identity dyad, and ® denotes a dydic product of two vectors. The time

average of the Maxwell stress tensor is

(ifM (r))= 1ReI%E(r)® E*(r)+ l.toH(r) ® H*(r)-l(% E(r)2 + I.to H(r)12)7], (3)

where * denotes a complex-conjugate value. It is convenient to choose for S a sphere centered at

the scattering object and having a radius r big enough to be in the far-field zone so that the

scattered wave is spherical [7]. Then Eq. (1) becomes

El = r2S 4dr (7_M(rr))" r ' (4)

where _ = r/r.

The total electric and magnetic fields at r are vector sums of the respective incident ("inc")

and scattered Csca") components given by [8]

E inc (r) = E_ nc exp(ikh inc. r)

__[ e-ikr ik_]=o. _(hinc + '_)-- - _(hinc - P) E_)nc'
r ----_ g [ r

E_nc •h inc = 0,

(5)

H inc (r) = .-_1 V x E inc(r)
to_l.to

= e[-%exp(ikhinc, r) hinc x Egnc

V go

(6)

=o2./I i e-ikr ikr -I E[-_, "[_<t] inc + _)_-_(h inc -e>el,l_o hinc xEb nc,

r-_ k L r r j_/_t 0

ikr

EsCa(r) = e_---E_ca (_),
r--_ r

E_ca (P) • _ = 0, (7)

H sca (r) =---L-Iv x E sea (r)
icop. o

-- E_O eikrr S oo r

where i = _"i', k = m_ogo

, (8)

_xE_Ca(_)

is the wave number in the surrounding medium, and h inc is the
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unit vector in the incidence direction. Because the incident and scattered fields are transverse,

the first and second terms in square brackets on the right-hand side of Eq. (3) do not contribute to

the integral in Eq. (4). We thus have

Fl = - e°r--_2Re f 4?_ _ { Einc (r)2 + Esca (r)24

_t°r2 Ref4?r r { IHinc(r) 2 + Hsca(r)124

+ 2E inc(r), [E sea (r)]* }

+ 2H ine(r). [H sea (r)]* }.

(9)

] 12 ]HinC(r) 2The terms E inc(r) and are constants independent of r, and their contribution to Fl is

simply zero. The contribution of the remaining terms follows from Eqs. (5)-(8) and the vector

identity (a × b). (c × d) = (a. c)(b. d) - (a. d)(b. c) :

27ZE0 _inc Im[ E_ca (t_inc)" EionC*]- _ f4?r r leben (r) 2 . (10)Fl- k

Recalling the extinction theorem [8] and the definitions of the extinction cross section Cex t,

differentia1 scattering cross section dCsc_a [9], and phase matrix Z [10], we finally derive
dg2

F1 = 1 hineCextlinc line f d,_ _ dCsca
c C d4n dD,

=l hinCCextlinc -l f ? ? P[Zll(?'hinc)Iinc + Z12(?'hinc)Qincc4 (11)

+ ZI 3(r, hinc )U inc + ZI 4 (_;, hint )Vinc ],

where I ine 1 _ E 2
= _-o t ol is the intensity of the incident beam.

Although the first term on the right-hand side of Eq. (11) represents a force component in

the direction of h inc , the direction of the total force is, in general, different from the direction of

propagation of the incident beam and depends on its polarization state because of the second

term. The projection of the total force on any direction h is simply the dot product F1 .,q. In

particular, the component of the force in the incidence direction is
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where

F1 ./,]in c l CI=- _ext _mc
C

lincf?_'hincdcscac4 " dg2

=! line [Cex t - Csca(COS 0)] (12)
C

.

=- ImCCpr ,
c

(cosO) = C_ca f 4rtd? dCsc_a P" fiincd_ (13)

is the asymmetry parameter,

(14)

is the total scattering cross section, and the quantity

Cp r =Cext- Csca(COSO) (15)

is the cross section for radiation pressure.

Although being the result of a lengthy rigorous derivation, Eq. (12) allows a transparent

physical interpretation. A beam of light carries linear momentum as well as energy. The

direction of the momentum is that of propagation, while the absolute value of the momentum is

energy/(speed of light). Since the total momentum of the electromagnetic field and the scattering

object must be constant, the radiation force exerted on the object is equal to the momentum

removed from the total electromagnetic field per unit time. Consider the component of the force

in the direction of incidence. The momentum removed from the incident beam per unit time is

inc
Cext I /c. Of this amount, the part due to absorption is not replaced, whereas the part due to

scattering is partially replaced by the contribution due to the projection of the moment of the

scattered light on the direction of incidence. This contribution is equal to the integral of

isca cosO/c over all scattering directions, or IincCsca<cosO)/c. Note that van de Hulst [I1]

used these arguments as a heuristic derivation of Eq. (12).

If the absolute temperature of the particle T is above zero, then electromagnetic radiation
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emitted by the particle causes an additional component of the radiation force. The emitted

radiation is incoherent and does not interact with the incident and scattered radiation, thereby

generating an independent radiation force component. Furthermore, emission is analogous to

scattering in that it generates radiation propagating radially in all directions. Therefore, we can

write the emission component of the radiation force by analogy with the scattering component

given by the second term on the right-hand side ofEq. (l 1):

±f' o,f
C J0 J4r_

where Kel(?,T, oD is the f'trst element of the Stokes emission vector. Kel(?,T,_) is the amount

of electromagnetic energy emitted by the particle in the direction _ per unit solid angle per unit

frequency interval per unit time and is expressed in terms of the particle extinction, K, and

phase, Z, matrices as follows [10]:

Kel(_,T,co) = It>(T,_ ) Kll(P,6o)- Ih(T, c0)f d_' Zli(P,_",6o) , (17)
,,,#4 rt

where

I b(T,cO)= l_-3c-2h_3Iex_ he 1-1 (18)

4 I "_kBT)

is the Planck blackbody energy distribution [9]. [Note that the particle is assumed to be

isothermal, which should be appropriate for micron-sized particles exposed to radiation sources

of moderate strength.] Unlike Fl , the emission component of the radiation force depends on the

particle temperature.

The total radiation force exerted on the particle is the vector sum of the component caused

by the particle response to the external illumination and the component caused by emission:

F = F l + F 2. This force depends on the direction and polarization state of the incident light and

on the particle orientation, shape, size, refractive index, and temperature. The optical

characteristics of the particle entering Eqs. (i1) and (16) can be computed using one of {he

existing theoretical techniques based on solving the macroscopic Maxwell equations or their
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integral counterparts [ 10].

Note that for particles in a vacuum, the particle temperature is linked to the incident

radiation because the total absorption of electromagnetic radiation by a particle must be balanced

by the total particle emission. In this sense, the forces F t and F 2 are coupled - both arise from

the incident radiation.

Consider now a small volume element comprising randomly oriented particles with a plane

of symmetry (such as spheres or spheroids) or particles and their mirror counterparts in equal

numbers and in random orientation. Following the analysis of symmetries performed by van de

Hulst [11], it is straightforward to show that the emission component of the radiation force

vanishes, whereas the component caused by the external illumination is now directed along t] inc ,

is independent of the polarization state of the incident beam, and is given by

(F1) = 1 fiinclinc [ (Cext) _ (Csca)(COS ®)]

c (18)

I _¢ ,nc(c ) .=--fi I pr ,
C

where (Cext), (Csca), and (Cpr) are the orientation-averaged extinction, scattering, and

radiation-pressure cross sections, respectively. This formula is identical to that derived by

Debye [6] for homogeneous spherical particles.

Finally we note that the radiation pressure caused by external illumination is accompanied

by the radiation torque exerted on the particle and given by

-Ids E/,'1--
S

(19)

: -r3 f4dr r • [(_',_ (r)) x r]

(cf. page 288 of [7]), where r is the radius of a sphere S centered inside the scattering particle and

having its surface in the far-field zone. Since _.l'x_ vanishes identically, only the first two

terms in square brackets on the right-hand side of Eq. (3) contribute to the integrals in Eq. (19).

The evaluation of this contribution is complicated because it requires the knowledge of not only
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the transverse component of the scattered electric and magnetic fields, but also of the

longitudinal component, which we have so far neglected because it decays faster than 1/r.

Marston and Crichton [12] computed r I for homogeneous and isotropic spherical particles,

whereas Draine and Weingartner [3] derived a formula for F t in the framework of the discrete

dipole approximation. Emission generates an additional component of the radiation torque

independent of F 1.
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